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A METHOD FOR COMPUTING THREE DIMENSIONAL 
FLOWS USING NON-ORTHOGONAL 

B OUNDARY-FITTED CO-ORDINATES 
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SUMMARY 

For three-dimensional fluid flows in complex geometries, it is convenient to make predictions using a 
non-orthogonal boundary-fitted mesh. The present paper describes an economical method of solving 
the equations of motion for two and three dimensional problems using such meshes. The locations on 
the mesh at which the depenent variables are calculated, and the methods used to solve the equations, 
are key issues in the development of a successful algorithm; these are discussed in the present paper. 
Results obtained when the proposed method is applied to several problems are also described. The 
method is intended for flows in which compressibility effects do not dominate. 
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INTRODUCTION 

Many challenging problems face the numerical analyst attempting to predict complex fluid 
flows. For example, when the fluid Reynolds number is high the convection terms in the 
equations of motions require special attention in the discretization procedure, an efficient 
solution method is needed, turbulent transport must be modelled, a strategy for handling 
irregular boundaries is often required, etc. Finite element developments have, since their 
beginning, been concerned with the treatment of irregular boundaries while some of the 
other questions related to fluid flow have, until recently, been largely neglected. The 
developers of finite volume methods have often focused attention on questions related to the 
fluid flow and heat transfer while ignoring, again until recently, the problem of treating 
irregular boundaries. The present paper describes a finite-volume method for calculating a 
wide range of three-dimensional flows in irregular geometries. 

There are three basic methods of treating irregular boundaries. First, a simple (e.g. 
Cartesian) mesh can be laid out to cover both the solution domain and the boundary; where 
the boundaries do not coincide with the mesh, interpolation is used in the application of 
boundary conditions. The problem with this approach is the complexity and inaccuracy that 
arises in the boundary-condition application. A second alternative is to generate an or- 
thogonal mesh which fits the boundaries. If a suitable orthogonal mesh can be obtained, this 
approach is numerically attractive; it may, however, be difficult to find such a mesh, 
especially for three dimensional flows, and to concentrate the grid where greater resolution is 
needed. The third alternative is to use a non-orthogonal mesh which is also aligned with the 
boundary. Methods have recently been de~elopedl-~ to economically generate suitable 
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non-orthogonal meshes for complex geometries, including the option of increasing grid 
resolution where detail is required. The disadvantage of this approach is that the computer 
code required to solve the equations of motion becomes more complex. Despite this 
disadvantage such methods may be nearly optimal provided good discretization and solution 
methods can be developed. 

The grids of particular interest here are those which form curvilinear quadrilaterals in two 
dimensions, and curvilinear hexahedra in three dimensions. Such grids can often be gener- 
ated manually or by using simple geometric relations; the grid covering a subchannel region 
of a fuel bundle, proposed by Ramachandra and Spalding,' and the sigma co-ordinates of 
Phillips,' fall into these categories. For more complex regions, including multiply-connected 
domains, the grid generation methods of Chq2 Winslow,' and Thompson, Thames, and 
Mastin" can be used. 

The goal of the present study was to develop and test a finite volume method for solving 
elliptic two dimensional (2D) and three dimensional (3D) fluid flow problems using non- 
orthogonal grids. The treatment of 3D parabolic flows was the primary target, but the 
method should be extendable to 3D elliptic flows. 

Several recent studies1'-'' have had similar goals, but the present method introduces some 
desirable novel features, and its predictive capabilities have been perhaps more exhaustively 
tested for truly elliptic flows. A detailed review of the state-of-the-art has been provided by 
Maliska." 

This paper does not contribute to procedures for generating non-orthogonal boundary- 
fitted meshes; the methods of Thompson, Thames, and M a ~ t i n ~ ' ~ ~  are extensively used. 

GENERATION OF CO-ORDINATE SYSTEM 

If the flow and heat transfer inside an irregular duct, such as shown in Figure l(a), is 
required, the first step is to transform the flow area into the parallelepiped shown in Figure 
Z(b). With the restriction that there is a simple stretching in the z-direction, the transforma- 
tion takes the form 

6 = [(x, Y, z ) ;  q = q(x, Y, 2); r=  (1) 

R E A L  SPACE TRANSFORMED SPACE 

( a )  ( b )  
Figure 1. Duct of arbitrary cross-section in the real plane (a) and the transformed plane (b) 
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Figure 2. &-ordinate lines for a given cross-section in the real (a) and transformed (b) planes 

The above transformation applies to any straight duct, but may also be applied when the 
duct centreline curvature is mild. Cross-sections of the duct in the real (x, y) plane and 
transformed (5, q) plane is shown in Figure 2. With an arbitrary grid spacing in the 
transformed plane (e.g. Aq = A( = l), the grid in the 6, plane can be constructed and the 
particular transformation used will determine where these lines fall in the corresponding 
cross-section in the x, y plane. 

For the type of transformation in equation (l), the grid over the entire 3D domain of 
interest can be generated from a fully three dimensional transformation, or the locations of 
the computational planes in the z-direction can be specified and a two-dimensional transfor- 
mation can be generated for each z-plane. The present study adopted the latter strategy. 
Thompson, Thames, and Mastin'' provide the mathematical motivation for choosing the 
following elliptic equations to generate this transformation 

The boundary conditions for equation (3) are the specified q values on the u1 and u, 
surfaces in Figure 2(a); for these boundary conditions and from the form of equation (3), it 
can be seen that q plays the same role as temperature in a heat conduction problem with a 
source-term distribution, Q. The desired transformation locates the position of the q- 
'isotherms' in the real plane that have already been drawn in the transformed plane. Except 
for the boundary condition specification, ( in equation (2) can be similarly interpreted. 

Because the application of boundary conditions to equations (2) and (3) is complicated by 
the irregular geometry, the independent and dependent variables are interchanged. lo This 
results in somewhat more complex differential equations for x(5, q) and y(5, q), but the 
boundary conditions are easily applied and the solution is straightforward. The distributions 
of P and Q are chosen to concentrate the grid lines in the desired regions. The reader is 
referred to References 3 and 10 for more details related to the transformation. 
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TRANSFORMATION OF THE EQUATIONS OF MOTION 

The differential equations of motion are required as the starting point for the solution in the 
transformed space where 5, q and I' are the independent variables. One can write these 
equations directly, using the velocity components normal to the 5 = constant, q = constant 
and r = constant surfaces (contravariant components) respectively as dependent variables, as 
outlined by Warsi, Devarayalu, and Thompson,13 but the equations are complex. Another 
alternative16s18 is to write the equations of motion in the physical plane in any convenient 
co-ordinate system (e.g. Cartesian, circular cylinder) and transform these to the general 
non-orthogonal system while maintaining the same dependent variables. This study adopted 
the latter strategy because it gives rise to relatively simple equations. The equations of 
motion in Cartesian co-ordinates were taken as the starting point in the present method. 

For a variable 4, where + may be unity (mass conservation), u, v and w (momentum 
conservation), T (energy conservation), etc., the conservative form of the +-conservation 
equation in a Cartesian system is 

(4) 

In this equation r* is the coefficient of + diffusion, Pm is the pressure gradient term (where 
appropriate), and S* is an accumulation of source terms not explicitly represented by the 
remaining terms in the equation. 

For many duct flow problems, the strong component of velocity in the z-direction in 
Figure 1 makes it reasonable to introduce a parabolic approximation?' This permits the 
solution to be marched forward plane-by-plane, with a 2D elliptic problem being solved 
on each plane. In this case the pressure is split into two components as follows: 

P(x, y, 2) = P(x, y ; 2) + P(z> (5 )  
and the second to last term in equation (4) is dropped. 

Equation (4), without the z-diffusion term, is now transformed to the 5; q, r co-ordinate 
system. The transformation described by Peyret and Viviand21 is used because the trans- 
formed equations that result are in the desired conservative form: 

The U, V, and W in this equation are the contravariant velocity components written 
without metric normalization, so that (for example) pU4 represents the convection of + per 
unit area across a surface of constant 5. The relationships between the Cartesian and 
contravariant velocity components are: 

W W = -  
J 

where J-' = (xey, - x,ys) is the Jacobian of the transformation between a given physical plane 
and the corresponding transformed plane, and r = z [i.e. equation (l)] has been used. The 
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Table I. Source terms l?" and 3" for 4 of u, v, and w 

coefficients are given by 

c, = 

c, = c, = -r+Jp 
C, = T'Jy 

where a = x: + y $  /3 = x,x, + yCy,, and y = x:+ y:.  The pm and .$+ terms are defined in 
Table I for each dependent variable. The !$ terms vanish when viscosity, p, is constant. 

DISCRETE EQUATIONS 

Grid layout for the dependent variables 

The importance of choosing an appropriate grid layout for the dependent variables can 
hardly be overemphasized because of the consequences of this choice on the form (and thus 
on the ease of solution) of the discrete equations, and the accuracy of the solution obtained. 
The motivation for choosing the grid used in this study is, therefore, presented in some 
detail. 

Several important points can be illustrated for the case when (, q forms a Cartesian mesh 
in the physical plane with u = U and v = V. The non-orthogonal method should be able to 
treat problems in which these conditions prevail over a subsection of, or all of, the solution 
domain. After a discussion of this special case, attention is turned to some of the other 
considerations which arise when these conditions are violated. AS an introduction, it is 
appropriate to emphasize that the mass conservation equation is, in the incompressible 
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Figure 3. Various possible grid configurations for which u = U and o = V 

formulation, primarily an equation for pressure rather than density.’* That is, the validity of 
any assumed pressure distribution is checked by determining whether or not the velocities 
that are obtained from the momentum equations, using this pressure, conserve mass. 

locate pressure and velocity at the same grid loca- 
tions, as shown for two dimensions in Figure 3(a). For the special case under consideration, 
that is u = U and 2) = V, the momentum equation for up uses an approximation of the 
pressure gradient in the &direction that involves only PE and Pw. Similarly the equation for 
uE involves only PEE and Pp. A chequerboard pattern results in which the pressures at the 
centre of the ‘shaded‘ areas drive the velocities in the ‘non-shaded’ areas whereas the 
pressures in the non-shaded areas drive only the velocities in the shaded areas. These two 
pressure fields are only loosely tied together through boundary conditions. The disadvan- 
tages of such a system include solution difficulties and apparently erratic (unless one only 
plots the velocities from the non-shaded areas and pressures from the shaded areas) results. 
A more detailed discussion is provided by Pata~~kar.’~ 

Most non-orthogoonal 
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An alternative grid layout used by Vanka, Chen, and Sha" is shown for the special case 
under consideration in Figure 3(b). In this grid pressures are located at the centres of the 
control volumes and the velocities are located at the corners. To evaluate the pressure 
gradient which drives the u-velocity at the upper right corner of the control volume centred 
at P, the average of PN with Pp is subtracted from the average of Pm with PE. Mass 
conservation for the control volume centered at P is checked using a velocity for each face 
obtained through an average of the velocities at the corners. These two averaging processes 
lead to the result that mass conservation for the P-control volume is satisfied if the corner 
pressures (PW, PsE, Psw and P-) and Pp are correct, independent of the pressures PE, Pw, 
PN, and Ps. Similarly, mass conservation for the control volume centred at E provides a 
constraint only for pressures PN, P-, PsEE, P,, and PE. A chequerboard pattern again 
emerges in which pressures at the centres of the shaded areas are very nearly decoupled from 
those at the centres of the unshaded areas. The solution difficulties that arise when such 
behaviour is permitted are described by Vanka, Chen, and Sha." 

If the velocities in the shaded areas and pressures on the non-shaded areas in Figure 3(a) 
are eliminated, the grid layout shown in Figure 3(c) results. The pressure and velocities are 
now suitably staggered, but there is still weak coupling between the pressures at P, E, N, W, 
S, .  . . and those at NE, SE, SW, N W , .  . . . Conservation of mass for the control volume 
centred at P depends only on the velocities normal to its faces (V,, U,, V, and V,) which are 
in turn, for this special case, depend through momentum only on PE, Pw, PN, Ps, and Pp. If 
these pressures are correct, mass conservation for the control volume centred at P will be 
satisfied even though the pressure PNE, PsE, Psw, and PNw are completely wrong. The latter 
pressures are checked by mass conservation for the control volume centred at SE in Figure 
3(c). Again, two nearly independent pressure distributions are present that are only weakly 
coupled through boundary conditions. 

If one of the two uncoupled pressure fields in Figure 3(c) is eliminated, together with the 
velocities driven by these pressures, the grid layout shown in Figure 3(d) results. This is the 
classical staggered mesh of Harlow and Welch.= It will be seen that all the problems related 
to the other meshes have been removed. 

We now depart from the special case just considered and suppose instead that, although 
the 6, 7 grid is still Cartesian (locally or globally) in the physical plane, the Cartesian 
velocities (u, u) are not aligned with the contravariant velocities (V, V), as shown in Figure 4. 
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VOLUME FOR u, 8 ve 

Figure 4. A grid for which Cartesian and contravariant velocities are not aligned 
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In this case the u, u velocities at the centre of each control-volume face are driven through 
the momentum equations by the pressures at the six surrounding pressure points. If the 
pressure distribution used is correct, the components of u and u which give the contravariant 
velocities normal to the faces (such as U,, U,, V,, and V,) must satisfy mass conservation. 
However, the components of u and u which give the contravariant velocities that lie parallel 
to the faces of the control volume shown (V,, Us, V,, and U,), are unconstrained by mass 
conservation. This freedom often results in oscillations or divergence when a solution is 
attempted or, if a solution can be found, the contravariant velocities that are not subject to 
mass conservation often appear to be erratic when compared to those that do satisfy a mass 
constraint. To force both the contravariant velocities to conserve mass, extra pressure points 
would have to be inserted at the corners of the control volume in Figure 4. But this leads to 
the grid in Figure 3c which has already been rejected. 

An answer to this apparent dilemma is to use the computed Cartesian velocities (u, v) only 
to calculate the contravariant velocity components that enter the mass conservation con- 
straint (i.e. U,, V,, etc. in Figure 4). If the other components, such as V, or U,,, are required 
for any reason, these should not be obtained from the Cartesian velocities u and u, but 
rather by interpolation using the U and V values that are constrained by mass conservation. 
This strategy has been found to eliminate solution difficulties and to yield convergence rates 
that are about the same as those for the corresponding formulation that is restricted to 
Cartesian grids. 

The same strategy can be used for a 3D non-orthogonal mesh, such as shown in Figure 
5(a). The application of these ideas to the solution procedure used will be detailed in a later 
section. 

Discrete equations 

The solution domain is divided into volumes such as shown in Figure 5, and in cross- 
section in Figure 4, and for each such volume the discrete values of the w-velocity and 
pressure at the centre are sought (i.e. wp and Pp), together with the u- and v-velocities at the 
centre of each face (i.e. u,, u,, u,, D,, uw, uW, us, and 0,). To obtain the equation for wp, the 
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Figure 5. Typical control volumes in the real and transformed planes 
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w-momentum equation is integrated over the volume, AV, and approximations are intro- 
duced22725 to reduce the integral equation to the algebraic equation 

ApwZ+l = AEwz+' + AwwF' + ANW;+' + As w:+' + AUwp,, +- A, 
l + E  wp 

AT' ABAv+L[S?w] Jp AV 

The n + l  superscript denotes the unknowns in the equation, whereas all other terms and 
coefficients are based on best-available estimates. The operator L [ ] represents the finite 
difference approximation of the quantity in brackets. The coefficients are 

AE = -(pU>, Aq Ar(4- 6,) + P,C,, AT Ar/A( (9b) 
Aw = (pU), A q  Ar(4 + Ew) + fiwClw A q  Ar/A( (94 
A~=(AE+Aw+A,+As+Au);  Ap=Ag(l+E)/E ( 9 4  

where the lower case subscripts denote face locations (Figure 4) and E and 6 are weights on 
the convection and diffusion termsz5 which maintain positive coefficients. Equation (9a) can 
be written more compactlyz3 as 

where nb represents the 'neighbours' of the dependent variable on the left side of the 
equation. 

The equations for u, and u, are obtained by integration of the u- and u-momentum 
equations over the control volume with dashed boundaries shown in Figure 4. These have the 
form 

where the A, and A,, are the same in both equations. Similar equations are written for u,, 

The pressure equation will be derived from the following mass-conservation equation for 
Vn, uw, ow, etc. 

the volume in Figures 4 and 5 

The contravariant velocities at each face (e.g. U,) are related through equation (7a) to the 
Cartesian velocities (e.g. u,, u,, and we) at the face. 

Solution procedure 

In a 3D-parabolic solution, all the velocities and pressures are iterated to convergence in a 
given I'-plane before commencing with the solution on the next downstream r-plane. Each 
iteration within a given r-plane, which results in updated values of the dependent variables 
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in that plane, is defined here as an 'outer' iteration. Each outer iteration involves an update 
of the coefficients in the algebraic equations being solved, using best available estimates of 
the required variables. 

In the proposed solution procedure, the first steps in an outer iteration involve the update 
of the coefficients in equation (lo), and the solution for w,. The solution method usedz2 
evaluates the presssure gradient AP/AT so that the w-values obtained both satisfy the 
momentum equation and yield the correct total mass flow. Equation (7c) is used to convert 

The next step is to solve for the velocities and pressures in a transverse plane. Two 
solution methods were used," but the discussion here is restricted to the method which was 
based on the well-known SIMPLER procedure of Patankar.23 According to this approach, 
the u- and u-momentum equations are first solved using the best available pressure, P*. The 
velocities obtained do not conserve mass, so these are denoted by u* and v*. The 
corresponding values U* and V* are obtained by substituting these, together with the w 
from step 1, into equations (7a) and (7b). These velocities must be then corrected by U -  U* 
and V- V'", respectively to obtain U and V velocities which do conserve mass. These 
changes are related through equation (7) to the corresponding required changes in the u and 
2, velocities as follows: 

w, to  w,. 

(144 
( 14b) 

u- u* = y- (u  - u*) - XT (v - v*> 
v - v* = x*(u - v*> - y* (u - u ) * 

Following the SIMPLER procedure, estimates of the change in u and v that result from the 
change in P of P' = P -P* are, from equations (11) and (12): 

* * Similar expressions can be written for un- u:, v, - v,, u,- u:, vw- z),, us- uz and v,- uz.  
These are substituted into equation (14) to obtain equations for U and V in terms of U*, 
V*, and P'. The following equation is then derived by substituting the values of U,, U,, V,, 
and V, so obtained into the continuity constraint, equation (13): 

ApPL = AEPf, + AwPh + A N P N  + ASP; + AMP& + A-P- + ASEGE + AswPkw + B (16) 

where the coefficients in this equation are given by 

AT AT 
4A, 4An 

ANE=-- P, -~ Pn; 

AT AT 
ANW = __ O W + -  P,; 4A, 4An 

A,= A,+ A,+Aw+As; A,+ A-+ASE + Asw = 0 (21) 
B is the mass source of the U", V", W field divided by pAV; for simplicity in writing 
equations (17)-(20). A( and A q  were taken as unity. 
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In these coefficients a, /3, and y are the components of the metric tensor, defined in the text 
following equation (S), evaluated at the points in Figure 4 denoted by their subscripts. A, is 
the central coefficient in the u,- or v,-equation (equations (11) and 12); similarly A,, A,, . . . 
are the central coefficients in the equations for u, or v,, u, or ow, .... The negative 
coefficients that appear in equations (17)-(20) are undesirable because of the potential for 
higher solution cost when iterative solvers are used. In practice, however, the magnitudes of 
these terms are sufficiently small that convergence does not seem to be significantly affected. 

Once P' is known the contravariant velocities which enter into the mass balance (U,, U,, 
V,, V,, etc.) can be found from equations (15) and (14). The other contravariant velocities, 
such as V,, U,, are interpolated from their mass-conserving counterparts, as described in the 
section describing the grid layout. To then obtain the corrected Cartesian velocities u and v, 
equation (7) is rearranged to obtain u and ZI explicitly in terms of U and V, and new U and 
V values are substituted. The stability of the scheme and accuracy of the results are both tied 
to finding u and ZI in this manner, as already discussed. 

The next step is to update the pressure. Following the SIMPLER'' (or PUP'") procedure 
the momentum coefficients are updated and an equation, identical to equation (16) except 
for the source term, is solved for P. 

This completes one outer iteration. The convergence is checked, and if the convergence 
criterion is not satisfied further outer iterations are performed until convergence is achieved. 

The sequence of steps is therefore as follows: 
1. The coefficients for all equations are calculated using best available velocities. 
2. The w-momentum equations (such as equation (10)) are solved, and the axial pressure 

gradient AFlAr determined. 
3.  With the best available pressure, the cross-flow momentum equations (such as equa- 

tions (11) and (12)) are solved for u* and v*. The corresponding contravariant 
velocities U", V" are found from equation (7). 

4. The P'-equation is then solved, and the solution used to correct U" and V* to U and V 
through equations (14) and (15). The corrected velocities conserve mass. The other 
contravariant velocities that lie parallel to the control volume face, are then found by 
interpolation using the newly computed U, V velocities. 

5. The corrected values of u and v are then found from equation (7). 
6. The pressure in the cross-flow plane is obtained using the SIMPLER method.23 This 

7. If convergence has not been achieved, return to step 1 and repeat the steps. 
Because of the alternate use of the Cartesian and contravariant velocities, the above 

procedure is somewhat more complex than the corresponding SIMPLER procedure applied 
to an orthogonal formulation. In addition twice as many momentum equations must be 
solved (i.e. two velocities per control volume face rather than one) and the extra velocities 
stored. These detractions are not as great as they might at first appear. Only a few iterations 
are required to solve the momentum equations to sufficient accuracy so that the incremental 
cost of solving the extra equation is small. The coefficients are the same for both velocities at 
each face so that extra storage is needed only for the added velocity, its source term, and the 
contravariant velocities. The advantage of the method lies in the tight coupling between the 
velocity and pressure fields, which leads to rapid convergence of the equation set. 

requires the solution of equation (16), with P' replaced by P. 

APPLICATIONS 

It is a common practice to test three-dimensional parabolic codes by solving for the 
developing flow in ducts whose cross-sections are invariant with axial distance, and by 



5 30 C. R. MALISKA AND G. D. RAlTHBY 

checking the predicted pressure gradient and the flow in the axial direction against previous 
numerical, experimental or analytical results. The secondary velocities (i.e. the velocities 
normal to the principal flow direction) in such flows are normally small, and it has been the 
authors' experience that setting these velocities to zero, so that only the axial momentum 
equation is satisfied, has no appreciable effect on the comparisons. Solving such problems, 
therefore, does not provide adequate verification. 

In the present study the ability of the method to treat truly elliptic effects in the cross-flow 
was first tested by setting the axial velocity to zero and by solving several two dimensional 
problems in the cross-flow plane. Then the three-dimensional parabolic flow in the entrance 
region of a circular duct was solved to test the solution of the axial-flow momentum 
equation. Finally, the flow in a complex converging-diverging duct was solved to show the 
flexibility and generality of the numerical model. 

Driven flow in a square cavity 

The first test is concerned with the recirculating flow in a square cavity. Figure 6 shows the 
geometric parameters and the boundary conditions for the problem. The tests were per- 
formed for Re = 100 and 400 so that flows with both predominant diffusion and convection 
were analysed. For both cases the problem was solved using a 28x28 uniform Cartesian 
grid, and the 28x28 non-orthogonal grid shown in Figure 6(b); the numerical solutions 
obtained using these grids were then compared. 

In generating the non-orthogonal mesh the region with high non-orthogonality was chosen 
to lie close to the moving wall and close to the region of high pressure (i.e. near the lower 
left corner). This attempts to impose on the code the most severe test conditions. Co- 
ordinate attraction was used whereby the q-lines were forced to concentrate near to the 
moving wall, and the &lines near the left wall. 

For Re = 100, the velocities and pressures obtained using the orthogonal and non- 
orthogonal grids were in excellent agreement; in addition, these results agreed well with the 
predictions of Burggraf ?' For Re = 400 the two grids again yielded nearly identical predic- 
tions of pressure, and the velocities were in quite close agreement, as seen in Figure 7. This 

- WALL 

( a )  

Figure 6. Nomenclature for the sliding lid problem, and the non-orthogonal grid used. The problem was also solved 
using an orthogonal grid 
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Figure 7. Velocity distributions along 4 lines through the cavity driven by the moving lid 

figure also shows that these velocities are in slight disagreement with Burggraf‘s’’ predic- 
tions. The combination of the coarse grid and upstream differences used in the present study 
are thought to have caused this discrepancy. Similar discrepancies are discussed by Varejao.28 

The number of coefficient updates to obtain solutions that were converged to the same 
tolerance was nearly the same for both the Cartesian and non-orthogonal grids. Further- 
more, the number of iterations to obtain a specified convergence on the P’-equation was 
nearly the same for both grids, which suggests that the presence of the corner points in 
equation (16) (i.e. P A ,  P&, Psw, PsE) does not strongly affect convergence. The computer 
time for Re = 100 was approximately 8 CPU-minutes on a 370/158 IBM computer. No effort 
was devoted to optimizing the code to reduce run times for this problem, or for the other 
solutions described below. 

Laminar entrance flow in a circular duct 

In order to test the axial flow equation using non-orthogonal grids, the entrance flow in a 
circular duct was solved. The 15 x 15 grid that was used is shown as an inset in Figure 8. This 



5 32 C. R. MALISKA AND G. D. RAITHBY 

Figure 8. Grid used to compute flow development in a circular duct (insert), and the computed pressure distribution 
in the axial direction 

Figure also shows the predicted dimensionless pressure gradient along the duct axis com- 
pared with the results of Sparrow, Lin, and L ~ n d g r e n ? ~  and the results obtained when the 
cross-flow velocities are set to zero. A small effect of the cross-flow velocities on the axial 
pressure distribution is, as already pointed out, usually found for the entrance flow in any 
straight duct of constant cross-section. The predicted development of the centreline velocity 
was found to be in excellent agreement with the analytical results of Sparrow, Lin, and 
LundgrenZ9 and with the experimental results of Re~hotko.~’ 

Parabolic flow in ducts with changing cross-sectional areas 

Jeflery -Hamel flow. A similarity solution e ~ i s t s ~ ~ , ~ ~  for two-dimensional flow in a diverg- 
ing or converging duct with plane walls. The ability of the method and the code to treat ducts 
with non-parallel walls was tested by solving this problem. A 16 X 16 Cartesian mesh was 
placed at several stations in the axial ( z )  direction so that the grid was non-orthogonal in the 
x-z and y-z planes. The similarity solution was prescribed at the inlet of a diverging channel 
and the solution obtained. The predictions at various axial stations were found to be in 
excellent agreement with the exact solution. Details of these calculations are described by 
Maliska.” 

Flow in a converging-diverging duct. With the individual components of the code tested, 
predictions were made for the duct shown in Figure 9(a). The entrance to the duct is 
rectangular with an aspect ratio of 3; with increasing z the duct expands in the x-direction 
and contracts in the y-direction in such a way that it becomes circular at the outlet. Nine 
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PLANE 6 

(b) 

Figure 9. Duct with variation of cross-section with axial distance, and the grid at plane 6 

solution planes (including the inlet and outlet) were used with an equal spacing in the 
z-direction of 1/6th of the inlet hydraulic diameter. The locations of these z-planes are listed 
in Table 11. 

The equation which describes the contour of the duct cross-section is: 

(;)m + (;)m = 1 

where a and b are the half-duct dimensions in the x and y directions (see Figure 9(a)). This 
expression yields a rectangular duct for m -+ 03, and a circular duct if m = 2 and a = b. The 

Table 11. Constants defining the bound- 
ary shape of the converging-diverging 
duct. DH is the hydraulic diameter at the 

inlet 

Plane N bl a m Z i D h  

3.000 00 0 
2-696 18.58 116 
2.411 9.115 2/6 
2.142 5.957 316 
1.888 4.377 416 
1.648 3.428 516 
1-421 2.794 616 
1.205 2.340 716 
1.000 2 816 
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Figure 10. Distributions of axial velocity along the axes of the duct in Figure 9(a) 
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Figure 11. Predicted axial pressure distribution in duct shown in Figure 9(a). The insert shows the velocity vectors 
on the outlet plane 
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values of b/a and of rn for each calculation plane are listed in Table 11. Using this equation 
for the boundary, a 15 X 15 grid was generated for each axial plane. The grid on plane 6 is 
shown in Figure 9(b), and grid at the outlet plane was similar to that in Figure 8. A fully 
developed velocity profile for a rectangular duct was used as the inlet condition. 

Inlet axial velocity profiles on plane 1, and w-velocity predictions on planes 3 , 6 ,  and 9 are 
shown in Figure 10 for the planes y = 0 and x = 0. The strong contraction of the duct in the 
y-direction causes the profiles on x = 0, Figure 10a, to be flatter. The slight expansion of the 
boundary in the x-direction results in an inflection in the profile in the plane y = 0 in Figure 
lO(b). The cross-flow velocity vectors on plane 9, shown in the insert in Figure 11, show the 
strong flow induced by the contraction and the stagnation point on the y = 0 plane. The 
pressure distribution along the duct is also shown in Figure 11. 

For ducts with unchanging cross-sections, the axial pressure gradient and axial velocity 
profiles were found to be very nearly the same for the computed cross-flow as for zero 
cross-flow velocities. To determine the effect of the cross-flow velocities for this problem u 
and II were held at zero while the axial velocities and pressure gradient were computed. The 
resulting axial velocity profiles are indicated as dotted lines in Figure 10 and the correspond- 
ing pressure gradient is similarly denoted in Figure 11. Even for such rapid changes in 
cross-sectional area, the results are little affected. There are, however, no inflection points in 
the axial velocity profile when the cross-flow is ignored. 

The predictions for this problem (15x15 grid at 9 stations) required about 4 CPU- 
minutes. 

DISCUSSIONS AND CONCLUSIONS 

The main goal of the research described in this paper was the development of a numerical 
method for the solution of three dimensional parabolic fluid flow problems in ducts of 
arbitrarily varying cross-section. Attention was focused on fundamental aspects of the 
numerical modelling process related to the use of non-orthogonal grids. The numerical 
results have shown that the use of natural non-orthogonal curvilinear systems for 3D 
parabolic problems is encouraging, and that an extension to 3D elliptic problems is viable. 

Concerning the fundamental aspects analysed, it was seen that the decision to keep the 
Cartesian components of the velocity vector as dependent variables in the transformed plane, 
together with the use of the contravariant velocities in the mass conservation balance, gives 
rise to simple equations and promotes stability for the numerical procedure. It was also 
demonstrated that the grid layout dictates the number of points involved in the pressure (or 
P') equation and, what is more important, it is responsible for the type of linkage between 
the pressure at a point P and its neighbouring pressures. Furthermore, this type of linkage 
will influence the convergence characteristics of the pressure or pressure-correction (P') 
equation. Finally, the method reverts to a standard 5-point equation when the grid becomes 
orthogonal. 

The code was fully tested by solving two-dimensional elliptic problems and three- 
dimensional parabolic problems in ducts with varying cross-section. 
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NOMENCLATURE 

influence coefficients in the finite difference equation for 4 
source term in the finite-difference equation for 4, 
transformed diffusion coefficients 
relaxation factor used in the implicit calculations 
Jacobian of the transformation 
pressure variation in the duct cross-section 
average pressure in the duct cross-section 
pressure correction 
pressure term in the 4 momentum equation 
transformed pressure term in the momentum equation 
source terms in the grid generation equations 
Reynolds number (defined for each case) 
source term in the equation for d, 
transformed source term in the equation for d, 
Cartesian velocities 
contravariant velocities written without metric normalization 

tentative velocity field 

Cartesian co-ordinate system 
general curvilinear system, transformed domain 
density 
boundary of the domain in the physical plane 
a general scalar field 

Subscripts 

D refers to the downstream calculation plane 

" Ey N' '' sE} indicates the location where the variables are evaluated NE, SW, etc. 
U refers to the upstream calculation plane 

partial derivatives of first order x' &ll> y' = I- 1 
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